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We discuss a quantizer which, for every mew input sample, adapts its
step-size by a factor depending only on the knowledge of which quantizer
slot was occupied by the previous signal sample.! Specifically, if the out-
puts of a uniform B-bit quantizer (B > 1) are of the form

Ay

Yu=Pu?;

+P,=1,3---,28—1; A, >0,
the step-size A, is given by the prewious step-size multiplied by a time-
snvariant function of the code-word magnitude |P, .| :

A,- = Ar—l'M(iPr—II)-

The adaptations are motivated by the assumption that the input signal
variance is unknown, so that the quantizer is started off, in general, with a
suboptimal step-size Astart. Mulliplier functions that maximize the
signal-to-quantization-error ratio (SNR) depend, in general, on Agrart
and the input sequence length N. For example, if the signal s stationary
and N — o, best multipliers, irrespective of Astart, have values arbi-
trarily close to unity. On the other hand, small values of N and suboptimal
values of Astart necessitate M values further away from unity. By
including an adequate range of values for N and Agrarr in a generalized
SNR definition, we show how one can determine stable multiplier functions
Mopr that are optimal for a given signal.

In computer simulations of 2- and 3-bit quantizers with first-order
Gauss-Markovian inputs, we note that, except when the magnitude of the
eorrelation C between adjacent samples s very high, Mopr has the property
of calling for fast increases and slow decreases of step-size. We derive
optimum multipliers theoretically for two simple cases:

1, K*

OPT __ - i
M,--[+8

e
: mﬂ]+$ua4m C=0

1119



1120 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1973

MPFT = |2p;+11[ + 82(|P—1]); C— 1.
K s a constant depending only on B, and 8 18 a posttive correction that is
significant only for the last slot: |P,_,| = 28 — 1. Using the example of
C = 0, we also show how the approach of specifying P, ., explicitly, in
the determination of A,, is more effective than an earlier procedure® where
A, is determined by past output values Y,y (rather than by a function of
their components, P,_, and A,_y).

Compuler simulations with speech and picture signals have shown, once
again, that SN R-maximizing multiplier functions demand step-size in-
creases that are relatively faster than step-size decreases. Values of Mopr
depend, interestingly, on whether the quantizer is used in a PCM or a
DPCM-type coder. In the case of speech signals, we propose corresponding
tables of Mopr values for B = 2, 8, 4, and 5. DPCM coding of speech
with 3- and 4-bit adaplive quantizers is the subject of a companion paper.!

I. INTRODUCTION

Quantization error, in general, can take one of two distinct forms,
overload distortion or granular noise, reflecting, respectively, situations
where the quantizer step-size is too small or too large relative to the
signal being quantized. This distinction has been widely noted for
1-bit quantizers (delta modulators), and variable step-size quantization
has therefore been widely discussed in this context.’~% The general idea
is to increase the step-size during overload and decrease it during granu-
larity, and to detect those conditions on the basis of observations of the
delta modulator bit stream. The step-size adaptations can be either
instantaneous® 58 or ‘‘syllabie,”’* and the advantages of adaptation have
been shown, among other means, by demonstrations of dynamic range
and of SNR gains over nonadaptive quantizers.®

The problem of step-size adaptations, as applied to quantizers with
more that two output levels, has been less widely studied. It is con-
ventional in such quantizers to take signal nonstationarity into account
by means of a suitably designed, time-invariant, nonuniform quan-
tizer.” Recently, however, two proposals have incorporated time-
variant step-size logics in multibit quantization. The first of these
techniques is a syllabically adapting PCM which Wilkinson empirically
designed for speech encoding at 10 kb/s.® The second proposal is an
instantaneously adapting quantizer discussed by Stroh, in the context
of differential encoding of Gaussian signals.? Syllabic adaption has the
advantages that it can be better tailored to a given signal such as
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speech and that it can also be designed to provide better resistance to
bit errors® than instantaneous adaptation. The latter, on the other
hand, has the advantages of minimal structure and applicability to
different types of signals, and, in relatively noise-protected environ-
ments, it constitutes an efficient and simple encoding procedure for
signal storage or transmission.

The adaptation that we discuss is instantaneous, and we indicate,
at the end of this paper, how it can perform better than Stroh’s com-
pandor? when working with one word of quantizer (output) memory.
We must emphasize here that in each case what is being gained by the
adaptation is increased dynamic range rather than an inherent signal-
to-noise ratio advantage over a nonadaptive technique. The adaptive
techniques presuppose that the input signal variance is unknown. The
quantizer step-size cannot therefore be meaningfully preset to an
optimized constant value, but must be allowed to adapt itself to signal
statistics in a fashion determined by a (time-invariant) adaptation
strategy.

The specific quantizer configuration that we consider is characterized
by a uniform spacing of nonzero output levels, and Fig. 1 shows a
snapshot of the quantizer at sampling instant » for the example of
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Fig. 1—Uniform quantizer with § levels (B = 3).
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B = 3. The step-size A, is adapted, for every new input sample, by a
factor depending only on the knowledge of which quantizer slot was
occupied by the previous signal sample. More precisely, if the outputs
of a B-bit quantizer (B > 1) are of the form

Au

Yu=Pu?, P,=+13,---,28 — 1; A, >0, (1)
the step-size A, is given by the previous step-size multiplied by a time-

invariant function of the previous code-word magnitude |P, 4| :
Ay = A, - M([Pral). (2)

Note that, according to (2), the entire quantizer is “‘accordioned in’’
when M < 1 and stretched out when M > 1. The resulting quantizer
is also uniform, with a step-size or “slot width” equal to A,. Practical
implementations will also include upper and lower limits Amax and
Aupx for A,. This is discussed later in the paper.

The above logic has been recently employed! for efficient differential
encoding of speech signals at bit rates of 20 to 30 kb/s. The adaptation
strategy (2) is indeed arbitrary.* But it represents, in the manner of the
adaptive delta modulator discussed earlier by the author,® a very
simple, yet nontrivial, type of exponential adaptation, and sets a lower
bound on the performance of possible sophistications that may include
nonexponential adaptations and the use of longer word memories, i.e.,
the use of P,_,, P,_s, etc.

An interesting result of this paper is that, for many interesting input
signals, the step-size multiplier function M (|P|) which minimizes the
mean-squared quantization error has the interesting property that it
demands step-size decreases significantly slower than step-size in-
creases. This is shown to be true for illustrative speech and picture
signals and for first-order Gauss-Markovian inputs where the magni-
tude of the correlation between adjacent signals is not too high (say,
less than 0.9).

In Section II, we discuss computer simulations with a first-order
Gauss-Markov input. We discuss the simple case of a white signal
(C = 0) at length. Results show the dependence of signal-to-quantiza-
tion-error ratio (SNR) on the function M (| P|) for different values of
B (number of quantizer bits), N (number of samples in input sequence),
and Astarr (initial step-size). We then specify adequate ranges of

* Schlink has recently described another useful, but Eerhaps less general, empirical
system.! Here, the adaptation consists in switching between only two quantizing
characteristics.
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variation for N and Astart, and thence determine a stable multiplier
function that is optimal for a white Gaussian signal. Further results
include the cases of C = 0.5 and 0.99, and show, for B = 2 and 3,
values of Mopr and SNR gain over a nonadaptive quantizer. We also
provide illustrative histograms of slot occupancies and observed step-
sizes and a family of companding curves for a 4-bit quantizer.

In Section III, we derive optimum multipliers theoretically for the
examples of ¢ = 0 and C — 1. Results substantiate the values of
Mopr from the computer simulation. We also compare our technique
with that of Stroh? and discuss the greater efficacy of our adaptation
strategy using the example of C' = 0. Finally, in Section III, we discuss
quantizer simulations with speech and picture inputs. We present
multiplier functions basically similar to those for Gauss-Markov
inputs. Optimal multipliers are found to be slightly different for PCM
and DPCM coders. In the case of speech, we provide separate tables of
MopT fOI‘ B = 2, 3, 4, &Ild 5.

II. GAUSS-MARKOV INPUTS

Our simulations have employed, as quantizer input, a first-order
Gauss-Markovian sequence {X,} of 10,000 samples generated by the
recursive rule

Xu=0C-Xu g+ V1 — %Ny, Xo=0, (3)

where the samples N, are drawn from a zero-mean, unit variance,
white Gaussian sequence that is independent of past values of {X,}.
The input sequence generated in (3) is itself Gaussian with a mean of
zero, a variance of unity, and a correlation between adjacent samples
equal to the preset constant C.

The quantizer output, by definition, is the output level nearest to
the input X,. It is formally written as

_ X, A ) X, -
Y,—{(Q[Z-]—}—l)i}sgn}{,, T2
_ Jign _ A . Sy
- ‘\(2 1) 2 Sg]:l Xr: A % 2 ] (4)
where [ -] stands for “greatest integer in.”
The quantization error
Er = Yr - XT (5)

has a magnitude that is bounded by A/2 except during overload which
is expressed by the second line in eq. (4).



1124 THE BELL SYSTEM TECHNICAL JOURNAL, SEPTEMBER 1973

A conventional performance measure is the signal-to-quantization-
error ratio

_ X X7
SNR = S (6)
where summations are assumed to be over the duration of a statistically
adequate input sequence.
We also refer in this paper to nonadaptive quantizers for which

M(|P,]) =1; all P,

7
A, = A; all r, @

and the variation of signal-to-quantization-error ratio SNRya is a
function of the constant step-size A for this case. The step-size which
maximizes SNRna for a nonadaptive quantizer will be referred to as
the optimum step-size Aopr. Values of Aopr and the corresponding
values of SNRua, for different values of B, have in fact been tabulated
by Max! for the case of C = 0. Max’s results also specify (via the
Gaussian probability density function) the probability P, that the
sth slot is occupied in an optimized nonadaptive quantizer:

P, = Prob (P, = 2s — 1) + Prob (—P. = 25 — 1);
Su=1,2 -, 28,
where P, is defined by (1). We will see presently that the probability

P, is also very relevant in the study of an adaptive quantizer when
c=0

(8)

2.1 A General Performance Criterion

Adaptive quantizers are needed, as mentioned earlier, when non-
stationary input signals are expected. Our simulations with Gaussian
signals utilized a stationary input (3). To make the study of adaptation
strategies meaningful in this stationary environment, we shall introduce
some unconventional performance measures. For example, consider
the ratio

N N
SNR(Y, Aszams) = 2 X} / > (9)

where summations are over the first N samples of the input sequence.
The dependence of SNR on Agrarr is significant only for small values
of N. For large N, (9) tends to an asymptotic value that is independent

of Agrare:
SNR(®) £ lim SNR(N, Agtart). (10)

N-sx
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Fig. 2—Step-size histograms (B = 3, ¢ = 0.5, N = 10,000).

In fact, if N is sufficiently large, the value of Agrarr is entirely
academic in the study of adaptive quantizers. See the step-size histo-
grams in Fig. 2, for example. Notice how they are independent of
AgTarT, except for the flat tails representing transient values of A.

In adaptive quantization, a suitable multiplier function for a given
signal should provide a compromise between quickness of response [as
measured by the magnitude of (9) for small values of N and bad values
of Agrart] and satisfactory steady-state performance [as measured by
the magnitude of (9) for large values of N and values of Agrart close
to Aoppr]. With these opposing factors in mind, we define an average
performance index

SNRave 2 3> SNR(N, Astart) (11)

1
Q—O ; ABTART
for values of N = 10, 100, 1000, and 10,000, and

1 1
AgTART = [ﬁ) , m, 1, W/l—O, 10:| Aopr.

The target values of N and Agrart above have been chosen with the
following factors in mind :

(7) First, as mentioned earlier, infinitesimally small ranges of
values (for example, Agrart =2 Agpr; any N) are uninteresting
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because they can result in Mopr values arbitrarily close to the
trivial value of unity.

(7) On the other hand, overly wide ranges of parameters which
include combinations like (N = 1, Agrart = 10%Aopr) reflect
pathological situations and lead to multiplier specifications that
tend to be quite uncorrelated with the statistical nature of the
signal being quantized.

(727) As long as the extreme situations in (Z) and (i7) are avoided, it
has been found that Mopr values are not overly sensitive to the
actual N and Agrart values employed in the performance crite-
rion (11), but depend mainly on the statistics of the signal being
encoded. In fact, optimal multipliers in this case are merely the
best multipliers in a variance-estimating problem (see the
theory for C = 0 in Section III) that includes neither N nor
AstarT a8 a significant parameter.

(iv) With the aforementioned factors in mind, the specific values
of N and Agrarr in (11) were selected to have the following
significance for a typical application such as speech quantiza-
tion. First, the 40-dB range for Agrarr reflects an extent of
uncertainty (about signal power) which is reasonably charac-
teristic of telephone conversation.” Second, when one considers
Nyquist-sampled speech for applications like adaptive PCM or
adaptive DPCM,! the values of N in (11) correspond at the
lower end to about 1 millisecond of speech, and at the higher
end to about 1 second of speech. This range clearly includes the
range of durations that one may associate with ‘“‘steady-state’”
or “stationary’ segments in the acoustic waveform. In fact, if
one considers phoneme durations, values of ¥ in the range 100
to 5000 seem to provide an adequate model. It is our contention
that by using N values of this type in an index of performance
such as (11), we can very usefully assess M-functions for
quantizing locally stationary signals such as speech, even when
simulating the quantizer with a (standard and easily dupli-
cated) stationary Gaussian input. Actually, however, we have
carried out completely independent simulations with real speceh
signals as well (Section 1V), and the results of this section are
directed toward the quantization of Gaussian inputs as such.

2.2 Multiplier Functions for B = 2, C = 0

Table I illustrates the nature of the SNR function (9) for two
multiplier functions in a 2-bit quantizer. The first multiplier function
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TaBLE I—ExampLE oF SNR FuncTions FOR B = 2, C =0
(EntrIES IN dB)

Values of N
20 log (“——;““T) 10 100 1000 10,000
OoPT

M, =08 Ms =16
—20 6.4 7.2 7.4 7.3
~10 105 89 7.9 7.3
0 9.7 8.3 76 7.3
10 5.8 7.2 7.4 7.2
20 —5.9 £2 7.1 7.3

M, - 098 M; = 1.04
—20 1.6 3.8 8.4 9.1
~10 5.2 5.8 8.9 9.2
0 107 8.0 9.4 9.2
10 0.0 5.9 9.0 9.2
20 —13.2 —5.0 3.5 8.1

shows quicker response (better SNR values for N = 10 and 100), while
the second function achieves a better asymptotic value of SNR (at
N = 10,000). Obviously, the poor asymptotic performance of the first
M-funetion is due to overly abrupt step-size oscillations in the “steady-
state,”” while the inferior performance of the second M-function for
small N is due to sluggish adaptations of A when Agrart is suboptimal.

Table II compares several M-functions* for a 2-bit quantizer on the
basis of (11). The functions included represent a subset of many more
functions which were simulated and compared on the basis of SNRave.
The best value of 6.8 dB has been noted for M; = 0.80, M, = 1.60,
although this function provides a clearly nonmaximal asymptotic per-
formance (Table I). The first five functions in Table II also satisfy

TaBLE 1I—CompParisoN oF MurTipLIER Functions (B = 2, € = 0)

M, M, SNRave (dB)
0.71 2.00 5.9
0.80 1.60 6.8
0.90 1.20 6.5
0.95 1.10 6.1
0.98 1.04 5.3
0.95 1.20 5.9
0.50 2.00 5.8
0.90 1.10 5.2

* Whenever there is no scope for confusion, we shall use the symbols M), Ma, M3,
and M, instead of M,(1), M.(3), M.(3), and M,(7).
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the interesting constraint suggested by Goodman :*!
M2-M, == MM =~ MM =21, (12)

where P; == 0.67 and P;=2(0.33 are the probabilities of inner- and
outer-slot occupancy in a nonadaptive quantizer with an optimal
Aopr for the Gaussian input. Goodman conjectures that the prob-
abilities of using M: and M in a well-designed adaptive quantizer
should indeed be equal to the parameters P; and P of the nonadaptive
quantizer. A constraint of the form (12) then represents a stability
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Fig. 3—Step-size histograms (B = 2, C = 0, N = 10,000).
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SNR IN dB
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Fig. 4—Comparison of multiplier functions (B = 2, ¢ = 0, Agrarr = 0.1 Agpr).

criterion which specifies that the random step-size A, neither grows out
of bounds, independently of the input, nor decays to infinitesimal
values. This criterion has been discussed earlier in the context of
adaptive delta modulation with a 1-bit memory.®

The desirability of constraint (12) on step-size multipliers is also
demonstrated by the step-size histograms in Fig. 3. The multiplier
pairs (0.9, 1.2) and (0.71, 2.0) satisfy constraint (12), and the corre-
sponding histograms have the desirable property that they are centered
on Aopr although they have different dispersions (suggesting differences
in quickness of response and steady-state performance). The function
(0.9, 1.10), on the other hand, produces a histogram whose mode is
clearly displaced from Agpr. This suggests that (0.9, 1.10) falls in a
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TasLeE III—SNR Function For M, = 0.90, M, = 0.90, M; = 1.25,
M,= 175 (B = 3, C = 0, ENTRIES 1N dB)

ASTART Values of N
20 log ( - )
Aorr 10 100 1000 10,000
—20 11.9 11.2 12.7 12.7
—10 14.5 11.8 12.6 12.7
0 15.7 11.2 12.9 12.7
+10 11.8 11.6 12.5 12.7
+20 —1.6 8.7 12.3 12.7

class of inefficient multiplier functions; this is attributed to the fact
that the function (0.9, 1.10) clearly violates requirement (12) above.!!

Finally, in Fig. 4, we show SNR (6) as a function of N for a fixed
value of Agrart, and for different M-functions. It is once again ap-
parent that the adaptation function (0.8, 1.6) provides an attractive
combination of responsiveness and asymptotic performance for B = 2.

2.3 Multiplier Functions for B =3,C =0

Table III demonstrates the nature of the SNR function (9) for
B = 3 and a specific multiplier function. Table IV uses the performance
criterion (11) to show the efficiency of this multiplier function (0.9,
0.9, 1.25, 1.75). As in the 2-bit example, the M-functions in Table IV
are only a subset of a much larger set of M-functions which were
simulated and compared on the basis of SNRavs. We have only
included the most interesting functions from our search for maximum
SNRave. The first three M-functions in Table IV satisfy a stability
constraint analogous to (11):

MOAOFIIPLQI8FO0T — AEP. rPs. MBS MP = 1, (13)

It is interesting that the best function in Table IV belongs to the class
of functions obeying (13). Notice also that the reduction of the number
of distinet step-size multipliers (second row in Table IV) leads to a

TasLE IV—CompParIsoN oF MuLTipLIiER Funcrions (B = 3, C = 0)

M, M, M; M, SNRave (dB)
0.90 0.90 1.25 1.75 11.7
0.90 1.00 1.00 1.75 11.4
0.5 1.0 1.0 2.0 9.6
0.3 0.9 15 21 8.9
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Fig. 5—Histogram of slot occupancies (B = 3, ' = 0, N = 10,000).

marginal decrease of SNRave. This tolerance to a reduction of the
number of distinct multipliers does seem to extend, although in lesser
measure, to larger values of B and to speech and picture signals.

Finally, Fig. 5 shows a histogram of slot occupancies for the best
M-function in Table IV. The number of quantizer slots or output
levels is equal to four (neglecting signs), and the dotted fifth slot
refers to the overload probability that has been accumulated into the
fourth bar of the histogram. It is interesting that, despite step-size
adaptations, the Gaussian nature of the input density function shows
up in the histogram. The heights of the bars in Fig. 5 represent experi-
mental slot probabilities of 0.47, 0.30, 0.14, and 0.09. Notice again
that, in the manner of (13):

0.9°47.0,90-%0. 1 250-14.1 75009 = (.994 =~ 1, (14)

2.4 Comparison of Adaptive and Nonadaptive Quantizers

Table V summarizes the nature of optimal multiplier functions for
B = 2 and 3. These functions are obtained on the basis of criterion
(11). Values of M are generally rounded, representing broad optima,
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TasLE V—QuaNTIZATION OF GAUss-MARKOV INPUTS [ENTRIES ARE
SNR (10,000, Aopr) VALUES IN dB]

B C 0.00 0.50 0.99
SNRna 9 9 9

2 SNRa 7 8 11
M(1) 0.8 0.8 0.5
M(2) 1.6 1.6 2.0
SNRna 14 14 14
SNRa 13 13 16

3 M(1) 0.90 0.90 0.30
M (2) 0.90 0.90 0.90
M (3) 1.25 1.25 1.50
M (4) 1.75 1.75 2.10

and the precision in the specification of M values may be as bad as
=45 percent in some cases.

To provide a fair comparison with optimal nonadaptive quantizers,
the performance figure used in Table V is the asymptotic value (10).
Formally, the notation used in the table is as follows:

SNR = SNR(I0,000, AOPT) . (15)

The subsecript A refers to the adaptive quantizer with step-size multi-
pliers optimized using (11), while the subsecript NA refers to a non-
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Fig. 6—Conditional density function of quantizer input.
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adaptive quantizer with constant step-size Agpr. The SNR values are
in dB, and are rounded to the nearest integer.

Note that negative values of € are not included in the table. The
assumption of a symmetrical quantizer (Fig. 1) renders the quantizer
design independent of the sign of C. Specifically, the quantizer input
X, has a probability density function (conditioned to X,_,) that is
sketched in Fig. 6; the optimum step-size is that which fits the
quantizer to this density function in a way that minimizes the sum of
overload error variance and granular error power. This optimum
depends only on the disposition of the PDF in Fig. 6 and the magnitude
of the nonzero mean, not the sign of it.

Finally, Table V assumes that no constraints exist on the minimum
and maximum values of step-size. Practical implementations will, of
course, involve such constraints (see Fig. 8), as well as constraints on
actual multiplier values. Significant conclusions from Table V are the
following :

(7) Except for ¢ = 0.99, optimal multipliers are such that step-size
decreases are always slower than step-size increases. The observation
has been found to extend for B = 4 also and, as seen later (Section IV),
to the quantization of speech and picture signals as well.

The need for fast increases of step-size and slow decreases thereof
may be physically explained as follows. Quantization errors during
overload tend to be more harmful than those during granularity, in
that the magnitude of granular error is restricted, by definition, to a
half step-size, while no such simple constraint exists for an overload
error. It is therefore reasonable to decrease step-sizes (relatively)
slowly to avoid unduly small step-sizes leading to the harmful overload
errors. The observation is obviously less significant for a coarser
quantizer than for a finer quantizer because granular errors in the
former are more comparable in magnitude to overload errors and
hence more equally harmful. This is indeed reflected in Table V. Note
that, for a given value of C, the disparity in rates of step-size increases
and step-size decreases is least for the coarser quantizer (B = 2).

There is an alternative explanation for (i) above, which also clarifies
why the disparity between the speeds of step-size increase and step-
size decrease is less apparent for large values of C. Refer to the stability
constraints (12) and (13), as discussed for the case of ¢ = 0. It turns
out that in the uniform (nonadaptive) quantization of a Gaussian
signal, the probability P, (8) is a monotonically decreasing function of
s. It follows then, as seen in (12) and (13), that multipliers for step-
size decreases have greater probabilities of being employed, and hence
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must lead to slower step-size changes each time they are actually used.
Explicitly, for B = 2, (12) can be rewritten:

an2 Pl
tn(1/My) ~ Py (16)
Obviously, then, if Py > P, the step-size increase (as given by M)
is faster than the step-size decrease (as given by M,).

The argument for nonzero values of C is very similar, except that
the probabilities P, peculiar to a Gaussian probability density function
should now be replaced by probabilities P,(C) that refer to the uniform
quantization of the asymmetrical conditional PDF in Fig. 6. Ap-
parently, the probabilities P,(C) are not monotonically decreasing for
C' = 0.99. This is why the requirement of relatively more rapid step-
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Fig. 7—Histogram of slot occupancies (B = 3, ¢ = 0.99, N = 10,000).
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gize increases is waived for the example of ¢ = 0.99 (while being still
true for ¢ = 0.5).

Figure 7 shows a histogram of slot-occupancies for B = 3 and
¢ = 0.99. Compare this non-monotonic PDF with the Gaussian histo-
gram for ¢ = 0 (Fig. 5). In analogy with (13), the stability criterion
associated with Fig. 7 is

(0.30-07(),90.63 1 5022 1009 = (0.993 = 1. (17)

Finally, it should be mentioned that the (relatively) slow step-size
decreases in Table V are fast enough, in an absolute sense, for typical
quantizer applications. For example, if M = 0.95, and a step-size
decrease of 20 dB is needed for adaptation to an idle-channel situation
in speech quantization, the time needed for such adaptation will be
45 samples. For Nyquist-sampled speech, this is only about 5 ms.

(#1) Although the quantization problem for ¢ = 0.5 is qualitatively
similar to that for ¢ = 0.99 (Fig. 6), we note that results for C = 0.5
(Table V) are nearly identical with those for ' = 0. The differences in
Mopr values that are caused by a nonzero C = 0.5 were apparently
too small to be detected in our finite search for best multipliers.

(#i7) Referring again to Table V, the best adaptive quantizers seem
to have an SNR advantage over the nonadaptive scheme (working
with an optimal step-size) only for very highly correlated inputs. In
fact, in many instances, the SNR gain resulting from adaptation is
seen to be negative (due, evidently, to overly abrupt manipulations of
step-size).

The reason for using an adaptive quantizer in these situations is
only to facilitate quantizations with much less knowledge of the input—
equivalently, with much less knowledge of Agpr than is necessary for
an equivalent performance in the nonadaptive case. In other words,
step-size adaptions increase the dynamic range of the quantizer and
enable it to handle inputs with large amplitude variations, such as
nonstationary signals.

The above idea has already been demonstrated by the asymptotie
SNR values in Tables I and III. To provide a more application-
oriented illustration, we undertook two extensions of our computer
simulation. These experiments employed B = 4, ¢ = 0.5, and the fol-
lowing multiplier function:

(0.90, 0.90, 0.95, 1.0, 1.2, 1.5, 1.8, 2.1). (18)

Finite step-size dictionaries were used, determined by maximum and
minimum step-sizes Ayax and Ampn. The starting step-size was set
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equal to Ager, subject, however, to modification because of the con-
straints Ayax and Ann.
In the first of these extensions, the step-size dictionary had the
characterization
Amax - Amin = Adpr (19)

Amax/Auin = R (20)

and the quantizer performance was studied in terms of SNR (10,000,
Appr) as a function of R. It was reassuring to note that the SNR was
constant to within 1 dB for sample values of £ in the range 1 to
w—due, no doubt, to the safe design feature (19). In fact, a maximum
SNR was noted for a noninfinite value of E.

In a more revealing second experiment, the quantizer was “centered’’
at a value Ayip not necessarily equal to Aper:

AmaxAyn = AiTID (21)

and the performance was measured as a function of Ayrp for values of
R(20) equal to 1, 10, and 100. Note that B = 1 refers to the non-
adaptive case.

Figure 8 plots these results. The monotonic improvement of dynamic

SNR(dB)

304
N=10,000

(NONADAPTIVE QUANTIZER)

—10+4—

—40 —20 1] 20 40

A
20 Loe.u(_ﬂ)
Aopr

Fig. 8—Companding characteristics (B = 4, ¢ = 0.5).
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range with increasing R is apparent. It is expected! that practical
quantizers can be designed with values of R equal to 100 or more.

III. THEORETICAL DERIVATION OF OPTIMAL MULTIPLIERS

In this section, we shall regard the adaptive quantization problem
as one of learning signal variance. In other words, the problem of
determining an optimum instantaneous step-size A, is regarded as
being tantamount to that of finding the best estimate at time r of
the conditional standard deviation S, of the quantizer input; and of
setting A, proportional to this estimate:

APTT = K(B)-$:(Ars, Pyoy). (22)
31 Caseof C = 0

The constant K is an obvious function of the number of quantizer
levels and, hence, of B. For the problem of uniform quantization of a
zero-mean Gaussian signal, Max's Table 1T specifies the following
values for K(B) :*
K(1) = 1.596, K(2) = 0.996,
K(3) = 0.586, K(4) = 0.335.
The dependence of S, on A,_; and P,_; (22) is, of course, characteristic
of an adaptation strategy which uses a 1-word memory.
We now propose that the variance of X, be estimated as the average
of the squares of (¢) X, i, the most recent quantizer input, and ()

-

S,_1, the most recent estimate of S. In other words, let

St = (X2, + 8.t (24)
We next recall the identity
Xea=Y.a—FE._, =

(23)

Pr—IAr—l
2

where FE,_; is the quantization error. Furthermore, by virtue of the
basic algorithm (22), we suggest that

S, = A2 /K? (26)
Let us use (25) and (26) in (24) and set the resulting value of S, in
(22). We obtain, after some algebra:

K[ P2 1 1 .
ooy = 5 [ B2 ot g (B — BedaPi |- 20)

*These K values are relevant for ¢ = 0 because, in this case, the conditional
density function (Fig. 6) is indeed zero-mean Gaussian.

In general, one may consider a weighted average of the type uz? + vs?. The
case of u = 0 will be appropriate for “‘steady-state’’ operation, and the use of v = 0
will be appropriate for a “transient” situation. The need for time-invariant step-size
mult-iplielg suggests a compromise design characterized by a weighting of the type
u =v = 0.5,

- ET-—h (25)
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E,_, is an unknown random variable, but the following can be said
about its role in (27):

First, the E?_, term is significant only for the last quantizer slot in
which, due to possible overload, E?_, can be arbitrarily large. Further-
more, for this end slot the —E, 1A,1P._; term tends to be positive.
Notice, from definition (25), E is negative in overload when P is
positive and vice versa.

For the remaining quantizer slots, E?_; is again positive but no
longer significant, and —E,_1A,_1P,_ is expected to be negligible as
well, on the average. This is by virtue of the uniform PDF approxi-
mation for granular errors

P(E) = 1/8; =5 < Euun < (28)
and a consequent decorrelation of output PA and error E.

The optimum multiplier function [square root of (27) ] can therefore
be expressed in the form
1, K2,

M,-OPT= |:_+§ r—1

E
5 ]+62(|P,_1|); € =0; (29)

where 82 is a positive correction term that is significant only for the
end slot:
2(|Pry|) =0 if |P,oa| %28 — 1. (30)

Table VI compares the M values from (29) with those from the
simulation in Section II.
3.2 Comparison With Stroh’s Adaptation Logic (C = 0)

Consider, in place of (24), a simpler variance estimation of the
type considered by Stroh :2

S = X2, (31)
This results in, by virtue of (25), (22), and arguments similar to those
at the end of the previous paragraph, a multiplier function of the form
K
M, = 5 1Pl + 8| Pecs]);
2(|Pra]|) =0 if |P,.y| =28 —1.

Table VI lists values of MPFT (29), M, (32), and the experimental
optima Mgxe from Table V. Values of K have been taken from (23).
Notice how MP*" provides a better specification of optimal multi-

(32)
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TaBLE VI—CoMPARISON OF MULTIPLIER FuNcTIONS

B =2 B =3
M, MOFT Mgxp | |Pr] M, MOFT MEgxp
0.50 0.79 0.80 1 0.29 0.75 0.90
1.50 + & 1.27 + & 1.60 2 0.87 0.94 0.90
—_ — — 3 1.45 1.26 1.25
—_ — — 4 2.00 4 & 1.61 + & 1.75

pliers than does M, Furthermore, as B increases, the constant K
approaches zero and the theoretical multiplier functions for the inner-
most slot (P,_; = =1) have the following limiting behavior:

‘lgim M.(1)=0 (33)
lim MPFT(1) = v1/2 = 0.71. (34)
B-—+x

Simulations with B = 4 and 5 have verified that the trend in (34)
is indeed more realistic than that in (33).

It should be mentioned that the adaptation strategy (31) is only
the simplest case of Stroh’s? method which has a general variance
estimator of the form

S, =13% x2,. (35)
Nu=1

It is interesting, nevertheless, that for the same length (n = 1 or
one-word) of quantizer memory, our adaptation rule specifies better
step-size multipliers, as seen in Table V. In fact, the use of MP*¥T
yields for (B = 3, C = 0), an SNR (for Gaussian signals) which is
better than what Stroh reports for n = 2 (10 dB; N = 2500) in his
Fig. 3.3. With the experimentally optimized M-function (Table V), we
indeed do significantly better and the SNR value of 12.7 dB for this
case is equivalent to » = 6 in Stroh’s logic and falls short of the
optimum (n = « in Stroh) by not much more than 1 dB.

The efficiency of our logic is clearly attributable to the way we
exploit quantizer memory, namely, in terms of P and A, rather than
in terms of the product of the two quantities (the quantizer output ¥
used by Stroh). Physically, the use of PA for adaptation seems to
wipe out some of the “overload” and “underload” cues that an indi-
vidual knowledge of P and A preserves.
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TaBrLe VII—CompARISON OF THEORETICAL(M?P®T) AND EXPERI-
MENTAL (MPXP, IN PARENTHESES) MULTIPLIERS

B c 0 0.99

0 M(1) 0.79(0.8) 0.5(0.5)
M(2) [1.27 + 621(1.6) [1.5 + 8](2.0)
M(1) 0.75(0.9) 0.25(0.3)

5 M(2) 0.94(0.9) 0.75(0.9)
M(3) 1.26(1.25) 12&15
M(4) [1.61 + 8](1.75) [1.75 + &#](2.1)

3.3 Case of C — 1

When the adjacent signal correlation C approaches unity, the con-
ditional PDF (probability density function) of X, approaches a
Gaussian spike centered at CX,_; (Fig. 6). The width of the spike
is proportional to the square root of (1 — C?), and therefore approaches
zero irrespective of the value of signal variance S. The adaptive
quantization problem is no longer one of variance estimation. It will
consist, instead, in a ‘fool-proof”’ strategy of the following type:
Select a step-size A, such that the PDF spike at CX;_, falls right in
the middle of the positive (or negative) half of the quantizer range,
assuming that CX,_; is positive (or negative). If we recall that a
B-bit quantizer has a half-range width equal to 257'A, we see the
requirement (assuming positive quantities throughout) is:

2B_IAr

CX,1 = 5 C—1. (36)

The logic clearly provides simultaneous protection against both over-
load and underload. Utilizing the estimate of X, 1 (25) in (36), we
obtain the condition

c [P,—,12A1-_1 _ Er—l] = 2527, C—1. (37)

Equivalently, with usual assumptions on the quantization error E,_,,

Jim agoer — A _ [Pl 4 iip

C -1 Ar—l 2341

&(|Pra]) =0 if P28 —1.

(38)

* See the spike in the histogram of Fig. 7.
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3.4 Comparison with Stmulation Resulls

Results for a general value of C(0 < C' < 1) can in principle be
attempted on the basis of a general PDF such as Fig. 6. However,
tractable derivations seem to require too many simplifying assumptions
to make the theory worthwhile, especially in view of the observation
(Table V) that the correlation becomes significant only if C — 1. We
therefore conclude this section by merely listing, in Table VII, theo-
retical step-size multipliers for ¢ = 0 and 0.99 [from (29) and (38)]
together with the experimentally optimized multipliers from Section II.

IV. QUANTIZER SIMULATIONS WITH SPEECH AND PICTURE SIGNALS

In this section, we present results from computer simulations of the
adaptive quantizer with speech and picture inputs.

The results in Table VIII refer to a low-pass-filtered speech signal
(about a second long), and a single frame of picture input (the face of
Karen in Picturephone® format®). Listed are step-size multipliers found,
by search procedure, to maximize an asymptotic SNR (10) as measured
over the entire length (N >> 10,000) of the input sequences.

The following observations are of interest:

() The signal PDF seems to have a significant effect (presum-
ably through overload statistics and the end-slot correction
82(|P,—1|) of Section IIT) on the largest step-size multiplier.
Note the value of M, for picture input.

TaBLE VIII—STEP-S1ZE M ULTIPLIERS FOR ILLUSTRATIVE SPEECH AND
PicTURE S16NALS (ENTRIES IN PARENTHESES REFER TO PICTURES)

B\ Coder "y

Type PCM DPCM

2 0.6, 2.2 0.8, 1.6

3 0.85 1,1, 1.5 0.9, 0.9, 1.25, 1.75
(0.9, 0.95, 1.5, 2.5) (0.9, 0.95, 1.5, 2.75)

4 0.8, 0.8, 0.8, 0.8, 0.9, 0.9, 0.9, 0.9,
1.2, 1.6, 2.0, 2.4 1.2 1.6, 2.0, 2.4

5 0.85, 0.85, 0.85, 0.8, 0.9, 0.9, 0.9, 0.9,
0.85, 0.85, 0.85, 0.85, 0.95, 0.95, 0.95, 0.95,
1.2, 1.4, 1.6, 1.8, 1.2, 1.5, 1.8, 2.1,
2.0, 2.2, 2.4, 2.6 2.4, 2.7, 3.0, 3.3
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33—

[Pl
283

Fig. 9—Desirable form of the multiplier function M for the adaptive quantization
of speech signals (B > 2) and first-order Gauss-Markov signals which are not highly
correlated (say, C » 0.5).

(1) Differentiation has the effect of decreasing adjacent sample
correlation. This seems to explain differences in multipliers as
applied to PCM and differential PCM quantizers for speech.
Note that the effect is most pronounced for B = 2.

(#77) Although the input signals are not first-order Markovian, the
multipliers have the earlier-mentioned property that step-size
increases are relatively more rapid than step-size decreases.
Refer to the general diagram in Fig. 9.
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TaBLE IX—CoOMPARISON OF SPEECH QUANTIZERS
(EnTRIES ARE SNR vaLUEs IN dB)

Logarithmic Adaptive Adaptive Adaptive
PCM with PCM with DPCM with DPCM with
u-law Uniform Uniform Nonuniform
B Quantization Quantization Quantization Quantization
2 3 9 13 12
3 8 15 18 18
4 15 19 22 24

It may be mentioned that in each of the above simulations, the
adaptive techniques also registered an SNR gain of 2 to 4 dB over
optimized nonadaptive quantizers. Table IX shows some results per-
taining to a band-pass-filtered speech sample. These results were
obtained from an independent experiment on coder assessment.!? The
adaptive quantizers (APCM, ADPCM) used the multipliers of Table
VIII*, and the nonuniform quantizer characteristics employed in
adaptive DPCM are those recommended by Paez and Glisson.!?
Finally, the log-PCM used a x = 100,” and the adaptive quantizers used
a maximum-to-minimum-step-size ratio of 100.

Notice from the table that adaptive quantization, as incorporated
into PCM, has the potential of outperforming the conventional
technique of logarithmie companding. Evidently the advantages over
log-PCM are even more impressive in ADPCM, and a companion
paper will discuss, at length, the use of 3-bit and 4-bit adaptive
quantizers in the DPCM coding of speech.!
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